Characterization of murine polyspecific monoamine transporters

نویسندگان

  • Yamato Miura
  • Takeo Yoshikawa
  • Fumito Naganuma
  • Tadaho Nakamura
  • Tomomitsu Iida
  • Anikó Kárpáti
  • Takuro Matsuzawa
  • Asuka Mogi
  • Ryuichi Harada
  • Kazuhiko Yanai
چکیده

The dysregulation of monoamine clearance in the central nervous system occurs in various neuropsychiatric disorders, and the role of polyspecific monoamine transporters in monoamine clearance is increasingly highlighted in recent studies. However, no study to date has properly characterized polyspecific monoamine transporters in the mouse brain. In the present study, we examined the kinetic properties of three mouse polyspecific monoamine transporters [organic cation transporter 2 (Oct2), Oct3, and plasma membrane monoamine transporter (Pmat)] and compared the absolute mRNA expression levels of these transporters in various brain areas. First, we evaluated the affinities of each transporter for noradrenaline, dopamine, serotonin, and histamine, and found that mouse ortholog substrate affinities were similar to those of human orthologs. Next, we performed drug inhibition assays and identified interspecies differences in the pharmacological properties of polyspecific monoamine transporters; in particular, corticosterone and decynium-22, which are widely recognized as typical inhibitors of human OCT3, enhanced the transport activity of mouse Oct3. Finally, we quantified absolute mRNA expression levels of each transporter in various regions of the mouse brain and found that while all three transporters were ubiquitously expressed, Pmat was the most highly expressed transporter. These results provide an important foundation for future translational research investigating the roles of polyspecific monoamine transporters in neurological and neuropsychiatric disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3).

For the elimination of environmental toxins and metabolic waste products, the body is equipped with a range of broad-specificity transporters that are generally present in the liver, kidney, and intestine. The polyspecific organic cation transporters OCT1, 2, and 3 (SLC22A1-3) mediate the facilitated transport of a variety of structurally diverse organic cations, including many drugs, toxins, a...

متن کامل

Effect of gestational age on mRNA and protein expression of polyspecific organic cation transporters during pregnancy.

Polyspecific organic cation (OC) transporters play important roles in the disposition of clinically used drugs, including drugs used during pregnancy. Pregnancy is known to alter the expression of drug-metabolizing enzymes and transporters, but its specific effect on OC transporters has not been well defined. Using quantitative polymerase chain reaction and liquid chromatography coupled with ta...

متن کامل

Selective substrates for non-neuronal monoamine transporters.

The recently identified transport proteins organic cation transporter 1 (OCT1), OCT2, and extraneuronal monoamine transporter (EMT) accept dopamine, noradrenaline, adrenaline, and 5-hydroxytryptamine as substrates and hence qualify as non-neuronal monoamine transporters. In the present study, selective transport substrates were identified that allow, by analogy to receptor agonists, functional ...

متن کامل

Functional characterization of testis-specific rodent multidrug and toxic compound extrusion 2, a class III MATE-type polyspecific H+/organic cation exporter.

Mammalian multidrug and toxic compound extrusion (MATE) proteins are classified into three subfamilies: classes I, II, and III. We previously showed that two of these families act as polyspecific H(+)-coupled transporters of organic cations (OCs) at final excretion steps in liver and kidney (Otsuka et al. Proc Natl Acad Sci USA 102: 17923-17928, 2005; Omote et al. Trends Pharmacol Sci 27: 587-5...

متن کامل

Interaction of organic cations with a newly identified plasma membrane monoamine transporter.

Many endogenous compounds and xenobiotics are organic cations that rely on polyspecific organic cation transporters (OCTs) to traverse cell membranes. We recently cloned a novel human plasma membrane monoamine transporter (PMAT) that belongs to the equillibrative nucleoside transporter (ENT) family. We have reported previously that, unlike other ENTs, PMAT (also known as ENT4) is a Na+-independ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017